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4.1 Introduction
The concept of symmetry and group theory are important in chemistry to

study the structure of molecules. The measurement of crystal structures, infra–
red spectra, ultra–violet spectra, dipole moments and optical activities, all these
are properties which depend on molecular symmetry. The term symmetry is
synonymous to beauty. The nature has made most of its creation symmetrical i.e.,
the sun planets animals and plants. symmetry is present in geometrical figures,
crystalline solids and molecule. Entities which possess more element of symmetry
are more symmetrical. The square is said to be more symmetrical than the
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rectangle due to fact that all sides of a square are equal whereas in a rectangle
opposite sides are equal. One can quantitatively say that square is more symmetrical
due to the presence of larger number of symmetry elements and symmetry
operations in it.
4.2 Symmetry Elements and Symmetry Operations

Symmetry operations is a movement of the molecule such that the resulting
configuration of the molecule is in distinguishable from the original. In another
way we can define a symmetry operation is to say that its effect is to take the body
into an equivalent configuration or an identical configuration.

A symmetry element is a geometrical entity such as a line, a plane or a point
with respect to which one or more symmetry operations may be carried out.

A symmetry elements and symmetry operations are closely inter related.
The symmetry operation should be performed with the molecule. There should
be atleast one point in the molecule which is unaffected by all the symmetry
operations. All the symmetry elements intersect at this point. Thus there is no
translational motion of the molecule during the course of a symmetry operation.

The followings are the symmetry elements and symmetry operations used
in the molecular symmetry with their symbol.

Symmetry Element Symmetry Operation Symbol
1. Identity To leave the E

molecule uncharged
2. Axis of symmetry Rotation by angle Cn

  F
HG

I
KJ

2
n  about the axis

3. Plane of Symmetry Reflection in a plane 
4. Centre of Symmetry Inversion of all atoms i

through the centre
5. Improper axis of Rotation about the

Symmetry axis followed by reflection Snin a plane perpendicular
to the rotational axis
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1. Identity—An identity operation results in the production of an orientation
which is identical to the original orientation. This is the operation of doing nothing
(leaving the molecule unchanged). The operation results not only in the production
of an equivalent orientation but in a identical one. The identity operation is really
not an operation at all but its is a mathematical requirements.

2. Axis of Symmetry—This is defined as an axis around which the
rotation of the molecule (we may choose clockwise rotation as +ve and counter
clock–wise rotation as –ve) by an angle   2

n  gives an equivalent configuration,
where n is the order of the axis. The order of axis may be two fold (C2), three fold
(C3), four fold (C4) etc. If there are axes of different order in a molecule, the axis
with the highest order is referred to as principle axis of rotation.

In water (H2O) molecule C2 (two fold) axis of rotation is present became
equivalent configuration is obtained by rotation through 180º.

A two-fold axis of rotation
In ammonia (NH3) molecule has a C3 axis passing through nitrogen atom.

The identical configuration is obtained by rotating the molecule through 120º.

N N N
H1 H3

120º
C31

H2 H3 H2

120º
C32

H1 H2 H1H3

N

H(1) H(2)
H(2) H(1)

180º
C2

Three fold axis of rotation

120º
C33  E

H1 H3H2
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C31 means one time rotation by an angle 120º, C32 means two time rotation
by an angle 120º while C33 is the identity (After C33 original configuration is
obtained).

BF3 molecule (AB3 type planar molecule) possess a three fold (C3) axis of
rotation passing through B–atom and is perpendicular to the plane of molecule.

F1
120º
C31

F3

F2

F3
120º
C32

F2

F1

F2

F1

F3

Three fold anix of rotation
In addition to C3, this type of molecules possess three more two–fold (C2)axes which are perpendicular to the C3 axis, passing through boron and each of

the fluorine atoms. There axes are in the plane of the molecule.
F1

180º
C21

F3

F2

F3

F1

F2

B B
F1

180º
C21

F3

F2

F2

F3

F1

B B

F1

180º
C21

F3

F2

F1

F2

F3

Two fold anis of rotation

B B B

B B



( 105 )

GROUP THEORY AND ITS APPLICATIONS

Like these square planare AB4 molecule e.g., [PtCl4]2– has four fold symmetry
i.e., C41, C42, Cu3, 2C2, 2C2, C2.

Four fold axis of rotation

Cyclopentadienyl anion C2H–5 has four five fold axis of rotation i.e., C51, C52,
C53, C54 and five two fold axis of rotation (5C2).

3. Plane of Symmetry—It is defined as an imaginary plane that bisects
molecule in such a way that the two parts are morror images of each ohter. It
should be noted that the operation of reflection gives a configuration equivalent
to the original one. If the operation is carried out twice on the molecules, we get
the original configuration (.   2  E).

The plane of symmetry can be classified into three types :
(a) Vertical plane (v) : The plane passing through the principle axis and

one of the subsidiary axis (if present) is called vertical plane.
(b) Horizontal plane (h) : The plane which is perpendicular to the

principle axis is called horizontal plane.
(c) Dihedral plane (d) : The plane passing through the principle axis but

bisecting an angle between two subsidiary axis (C2) is called dihedral
plane.

Pt 180º

C2'

180º180º

180º

C2'

C2"C2"

Cl Cl

Cl Cl

Cl1
Pt Pt Pt Pt

Cl2

Cl4 Cl3

90º
C41

Cl4 Cl1

Cl3 Cl2

90º
C42

Cl3 Cl4

Cl2 Cl1

90º
C43

Cl2 Cl3

Cl1 Cl4
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Water molecule has two symmetry planes i.e., xz xz. One is passing through
oxygen atom and bisecting the angle HOH i.e., yz plane called as yz. The other
plane of symmetry is passing through oxygen atom and two H–atoms. This is an
xz plane and is called xz.

O

2
x

H1 H2

xz plane

C2

yz plane

Plane of symmetry is H2O molecule
Ammonia molecule has three symmetry plane i.e., 3v. All there planes are

passing through rotational axis. N–atom and one H–atom.

In case of BF3 (triangular planar) molecule, there are three v plane, each
passing through the principal axis (C3) and one of the C2 i.e., through
B–atom and one of the fluorine atom and bisecting the angle between other two
F–atoms. BF3 is planar molecule and hence plane of molecule is also a plane of
symmetry. This is perpendicular to the principal axis and is denoted by h.

N

vb va

vc

Hb
Ha

Hc

v F

F

F

v
h

v

—xy plane
B
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In case of square planar [Ni(CN)4]2–, there are four v plane and one h plane.
Two v plane passes through C4–axis Ni(II) ion and two CN– ion at opposite corners.
To  plane passes through Cu–axis, Ni(II) ion and between two CN– and is called
d. The molecular plane passing through Ni(h) ion and four CN– is h.

N d

v

v

d

—n

CN–
h

CN–

CN– CN–

In hexagonal planar benzene molecule, six v and one h are present.
4. Centre of invertion (i )—If a point exists in the centre of a molecule

such that identical atoms are found on either side at equal distances from it, the
central point is called the centre of inversion. All homonuclear diatomic molecule
possess the centre of symmetry. e.g., Cl2, H2, Br2 etc. CO2, C2H2 ethylene trans
dichloroethane, benzene, [PtCl4]– –, [Ni(CN)4]– – etc. have a centre of symmetry.

C = CCl
ClH
H

Pt
ClCl

ClCl

H ————— H O = C = O

5. Improper axis of symmetry or Rotational–reflectional axis of symmetry
(Sn)—This operation in combination of a rotation (Cn) with a reflection () in a
plane perpendicular to the rotational axis. After this composite operation, it leaves
the molecule in an indistinguishable configuration.

Sn  Cn.h
If any molecule contains Cn and h operations, then it is  generally contains Sn.

S2  C2.h  i
S2 is i became after the rotation by 180º and then reflection perpendicular

to C2 produce i.
S3  C3.h
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BCl3 contains S3. BCl3 molecule after C3 and then h  C3 produce
indistinguishable configuration.

As Cn generates n operations i.e., Cn1, Cn2, Cn3, ……… Cn4(E), Sn also
generates n such operations when n is even but generates 2n when n is odd.

If n  even
i.e., n  3

S C Ch h31 31 1 3 . . 
S C C E Ch32 32 2 32 32  . .
S C E E Eh h h n n33 33 3 2   . . . . .    
S C C C E C E E Ch h h34 34 4 33 31 2 2 31 31   . . . . . . .  
S C C C E C E E Ch h h h h h35 35 5 33 32 2 2 32 32   . . . . . . . . . .     
S C C C E E E E E Eh h h h36 36 6 33 33 2 2 2   . . . . . . . . . .   

Hence S3 generate two S31 and S35.
Like this S4 generates two S41 and S43.
Writing all symmetry operations in a molecule.
Examples :
(i) H2O O

H H
E, C2(2), xz, yz

(ii) NH3
N

H H
H

E C C a b c, , , , ,31 32   

(iii) BCl3 B Cl
Cl
Cl

E C C C S Sv h, , , , , , ,31 32 2 31 353 3 12  
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(iv) [PtCl4]– – Cl
Cl Pt Cl

Cl

E C C C C C S S iv h, , , , , , , , , ,41 42 43 2 2 41 432 2 4 14    
(v) [Pt (NH3)2Cl2] (Trans dichloro diamine Pt (11))

NH3
Cl Pt Cl

NH3

 E, C21, 2C2, 2, h, i = 8

(vi) CH4 C
H H

H

H

E C C S d, , , ,8 3 6 6 243 2 4  
(vii) H2 H H

E C C v h, , , ,  2 
(viii) HCl H Cl

E C v, , 

(ix) [Co(NH3)6]3+  NH3
NH3

Co NH3
NH3

NH3

NH3

E C C C C S S iv h, , , , , , , , ,6 3 8 6 6 8 6 3 484 2 3 2 4 6  
4.3 Group and its Characteristics

A group is a collection of elements that are interrelated according to certain
rule. We shall be concerned with the groups formed by the sets of symmetry
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operations that may be carried out on molecules or crystals. The followings are
the requirements for a mathematical group.

(a) Closure (b) Identity
(c) Inverse (d) Association

(a) Closure—The product of any two elements in the group and the
square of each element must be an element in the group.

The product of any element A and B produce C. C must be element of the
group.

A.B  C
A2  D
B2   E

C, D and E must be element of the group.
The order of combination is very important as  AB is not necessarity equal

to BA.
If AB  BA, the members A and B are said to commutative.
and if AB  BA, the members A & B are not commutative. The members of

the group which are commutative form Abelian group.
(b) Identity—One element of the group must commute with all other

elements and leave them unchanged. This element is called identity and represented
as E.

Identity must be present in a group.
E.A  A.E  A
E.B  B.E  B

A and B are elements of the group.
(c) Inverse—Every member of the group must have its inverse as an

member of the group.
A.A–1  A–1.A  E

(d) Association—Multiplication must be associative.
A(B.C)  (A.B).C

Symmetry elements of a molecule constitute a group.
4.4 Product of Symmetry Operations

The set of symmetry operations of water molecule represents a group. The
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total symmetry operations of water molecule are E, C2, xz, yz. There four
symmetry operations follow the all requirement of a mathematical group.

Rule (a) : C xz yz2 ,  

C2.C2  E
Rule (b) : C2.E  C2

xz. E = xz

Rule (c) : C2.C2–1  E
xz. sxz–1 = 

Rule (d) : C2.(xz.yz) = (C2.xz).yz
 C C yz yz2 2. . 
 E E

There rules may also be verified using the multiplication table.
Multiplication Table for symmetry operations of water molecule i.e., for C2vpoint group.

These are illustrated as :
C E E C C2 2 2. . 
xz.E = E.xz = xz

O OO
H1 H2 H2 H1

H2 H1

C2 xz
xz

H O (C )2 2v xz yzC2E
E E C2 xz yz

C2 xz yzC2 E
xz yz C2Exz

yz C2 Exzyz

Symmetry Operations

yz
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yz = E.yz = yz

C2 . C2 = E

C2 xz = yz

C2.yz = xz

xz.C2 = yz

xz.xz = E
xz.yz= C2

yz.C2 = xz

O OO
H1 H2

C2

H2 H1

C2

H1 H2

O OO
H1 H2

C2

H2 H1

xz

H2 H1

yz

O OO
H1 H2

C2

H2 H1

yz

H1 H2

xz

O OO
H1 H2

xz

H1 H2

C2

H2 H1

yz

O OO
H1 H2

xz

H1 H2

yz

H2 H1

C2

O OO
H1 H2

yz

H2 H1

C2

H1 H2

xz
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yz.xz = C2

yz.xz = E
Multiplication Table for Symmetry Operations of NH3 molecule i.e., for C3vPoint Group.

Symmetry operations
NH3 (C3v) E C31 C32 a b c

E E C31 C32 a b c
C31 C31 C32 E c a b
C32 C32 E C31 b c a
a a c b E31 C31 C32

b b a c C32 E C31

c c b a C31 C32 E

Some of them are illustrated as :

C31.C31 = C32

C31.C32 = E

O OO
H1 H2

yz

H2 H1

xz

H2 H1

C2

Hc Hb

C31Ha

Hb Ha

C31Hc

Ha Hc

Hb

C32

Hc Hb

C31Ha

Hb Ha

C32Hc

Hc Hb

Ha

E
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C31.a = c

C31.b = a

C31.c = b

4.5 Sub Groups, Classes, Similarity Transformation and Conjugate
Order of a group : The no. of elements in a group is called its order and is

represented as h. In a molecular point group, order is the no. of symmetry
operations possible. In water molecule (C2v point group), the total no. of symmetry
operations are four and hence order is four. In ammonia molecule (C3v point
group), the total no. of symmetry operations are sin and hence order is sinx.

Sub group : Smaller groups that may be found within a larger group are
called subgroups. The elements of a subgrup should obey the following conditions :

(i) The elements of sub groups must obey all the conditions of a group.
(ii) If g is the order of the group and s is the order of the sub group, the

g/s is a natural number.
In water molecule, the followings are the subgroups :
(i) E
(ii) E, C21
(iii) E, xz(iv) E, yz

Hc Hb

C31Ha

Hb Ha

a
Hc

Ha Hc

Hb

c

Hc Hb

C31Ha

Hb Ha

b
Hc

Hb Hc

Ha

a

Hc Hb

C31Ha

Hb Ha

c
Hc

Ha Hb

Hc

b
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In ammonia molecule the symmetry operations E, C31, C32 constitute a
subgroup of order 3.

Classes, Similarity Transformation and Conjugate : There is another way
in which the elements of a group may be separated into smaller sets and such
sets are called classes. Before defining a class, we should know about similarity
transformation.

If A and X are two elements of a group, then X–1AX will be equal to some
element of the group, say B. We have

X–1AX  B
Here element B is the similarity transform of A by X. A & B are also called

as conjugate. The followings are the properties of conjugate.
(i) Every element is conjugate with itself

A  X–1AX
(ii) If A is conjugate with B, then B is conjugate with A.

A  X–1BX
B  Y–1AY

Y be the another element of the group.
(iii) If A is conjugate with B and C, then B and C are conjugate with each

other.
A complete set of element that are conjugate to one another is called a class

of the group.
For NH3 molecule (C3v point group), operations C31 & C32 and a, b, c are

similar. According to similarity transformation rule.
A C Ca a a c     1 31 32. . .

(See Multiplication Table)
Here B C a a   31 1 1, ,x x 
Taking B = C31 and any operation x of the C3v group and see that according

to similarity transparent leads, to either C32 or C31 and hence we say that C31 and
C32 are similar and belongs to same class.

Like this a, b and c belongs to some class in C3v point group.
Following one the classes for the point group given

C E, C classesv xz yz2 2 4 , , 
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C E, C classesh h2 2 4 , , i
D E, C C C C C S Sh n v v v3 31 32 2 2 2 31 35 1   . , , , , , , , , ,   

or, E, C C S classesh v2 3 2 3 63 2 3, , , ,  
4.6 Equivalent Atoms and Equivalent Symmetry Elements

Equivalent atoms in a molecule are those that may be inchanged with one
another by symmetry operations. Equivalent atoms must be of the same chemical
species. All hydrogen atoms in methane, ethane, benzene are equivalent. All
fluorine atoms in SF6, all nitrogen and hydrogen atoms in [Co(NH3)6]+ + are
equivalent. All fluorine atoms in PF5 are not equivalent became apical and
equitorial fluorine atoms are not interchanged by the symmetry operations.

A symmetry element P if charged into element Q by an operation generated
by a third element X and Q interchanged back into P by X –1, then P and Q elements
are equivalent. If P can be interchanged into still a third element R and Q may
also be changed into R. The three elements P, Q and R form an equivalent set. Any
set of symmetry elements that can be transformed into each and every other
member of the set by application of some symmetry operation is said to be a set
of equivalent symmetry elements.

In a square planar AB4 molecule there are four two fold axes in the
molecular plane. It is easy to say that C2 may be interchanged into C2 and vice
versa while C2 may be interchanged into C2 and vice versa by rotations about
the four fold (C4) axis and by reflections in the symmetry planes. But there is no
way for interchanging C2 or C2 into C2 or C2 or vice–versa. Hence, C2 & C2 form
one set of equivalent symmetry axes and C2 & C2 are another equivalent
symmetry axes. Similarily, two plane v & v are equivalent symmetry planes while
v & v are another equivalent symmetry planes.

A

C2'

C2"

C2

B

B
C2"

B

B

v'

v"

vv'"
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4.7 PointGroups and Classifications
Molecule may be of high symmetry or may be of low symmetry. Symmetry

of the molecule can be judged using the symmetry elements and symmetry
operations present in them. All the symmetry operations present in a molecule
form a group. A molecular group is called as  a point group. The symmetry group
or a point group of a molecule is denoted by a specific symbol. This symbol was
introduced by Schoenflies. Several molecules have the same set of operations and
hence, belong to the same point group but different set of operations belong to
the different point group.

Classification : Molecules are classified into different groups.
Type 1 : Molecules with low symmetry.
(i) Point group C1—Molecule having no other symmetry elements except

identity (E) belong to this group. This group has a onefold proper axis of rotation
(C1) and includes all molecule possessing one assymetric atom.

C
Cl F

Br

H

(ii) Point group Cs—This group has only two elements of symmetry i.e.,
E (identity) and  (plane of symmetry) e.g.,

O
H Cl ,

O
H D,

O
Cl ,
Cl O SeCl ,

O
O

N Cl

(iii) Point group Ci—This group has only two elements of symmetry i.e.,
E and i (point of symmetry)

i.e., 1, 2–dichloro dibromoethane
H

Cl

F

F

Cl
H

Cl
H

H

H

H
Cl
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(iv) Point group Cn – This group has only a n–fold proper rotational axis
e.g., 1, 2–Dichloroethane–point group C2, 1, 3–Dichloroallene – point group C3.

Type–2 : Molecules with intermediate symmetry.
Characteristic for this type of symmetry group is the presence of rotational

axis (Cn) along with plane of symmetry (), subsidiary rotational axis (C2), point
of symmetry (i).

(i) Point group Cnv—The assocation of a rotational axis (Cn) with n
vertical reflection planes (nv) generates Cnv point group. There are so many
molecules which have Cnv point group.

(a) C2v – contains E, C2 and 2v
e.g., H2O, SO2, CH2Cl2, ClF3, SO2Cl2, SiCl2Br2, BClF2, C6H5X, C6H4X2(02& m), Cis–[Pt(NH3)4Cl2]– –, Cis–[Pt(NH3)2Cl2], Cis–H2O2.

(b) C3v – Contains E, 2C3 and 3v
e.g., NH3, PH3, PCl3, CHCl3, POCl3, CH3Cl

N
H H

H
(c) C4v – Contains E, 3C4 and 4v

e.g., [Co(NH3)4ClH2O]+, SF5Cl (octahedral), XeOF4, ClF5

(ii) Point group Cnh – A rotational axis Cn, h perpendicular to Cn gives
rise to Cnh group. Here Sn (Cn.h) also be present.

(a) C2h – Contains E, C2, h, S2 ( i)
e.g., Trans–H2O2, Trans–2–butene, Trans–CHCl  CHCl, Trans–N2F2

C = C
Cl
H Cl

H

H H O O

Cl NH3

Cl NH3

Xc
F F

F F

O

O S
Pt
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(b) C3h – Contains E, 2C3, h, 2S3
e.g., H3BO3 (Planar)

B
O H O

H
H O

(iii) Point group Dn—A Dn group is generated by high order rotational axis
Cn (n   2) and nC2 axes pependicular to it. This group has only a few molecular
species.

(a) D3 – e.g., [Co(en)3]+++, Gauche conformation of ethane.

(iv) Point group Dnd—The Dnd groups are generated by the association of
the Dn (Cn + nC2) elements with n dihedral planes (nd).

(a) D2d – Contains E, 3C2 (mutually perpendicular), S4 e.g., Allene,
cyclooctatetroene.

C = C = C
H
H H

H
(b) D3d – Contains E, 2C3, 3C2, S6, i, 3d

e.g., staggered ethane, cyclohexane

eu Co
}eu

} eu

{

H
H

H

H

H
H
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(c) D5d – Contains E, 4C5, 5C2, 5d
e.g., Mn2(Co)10, staggered ferrocene

(v) Point group Dnh – The Dnh groups are generated by the association
of Dn (Cn + nC2) with n and improper axes also.

(a) D2h – Contains E, C2, 2C2, 2v, n, i
e.g., C2H4, N2O4 (planar), C2O4– –, Pt(NH3)2Cl2 trans, para–C6H4X2, Naphthalene.

C = C
H
H H

H
(b) D3h – Contains E, 2C3, 3C2, 3v, h, 2S3

e.g., BF3, PF5, PCl5, SO3, BCl3, CO3– –, NO3–, C2H6 (eclipsed), planar–
tribromobenzene.

B
F F

F
(c) D4h – E, 3C4, 4C2, 4v, h, i, 2S4

e.g., [PtCl4]– –, [Ni(CN)4]– –, trans–SF4Cl2, trans MA4B2 coplanar
cyclobutane.

Cl
Cl Pt Cl

Cl
(d) D5h – E, 4C5, 5C2, 5v, h, 2S5

e.g., cyclopentane, eclipsed ferrocene

Fe

H

H

Mn Mn
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(e) D6h – E, 5C6, 6C2, 6v, h, 2S6, i
e.g., Benzene, Eclipsed Cv (C6H6)2

Type – 3 : Molecules of high symmetry.
[A] Linear Molecules :

(i) Point group Cv – The linear molecules have infinite rotational axis
(C) and infinite no. of vertical plane (v) Cv – E, C, v

e.g., HCl, HCN, CO, OC, HBr, NO

(ii) Dh – Contains E, C, C2, v, h, i
e.g., H2, Br2, Cl2, CH  CH, CO2, BeCl2, XeF2

C2
HH C

[B] Molecules having regular geometric bodies i.e., tetrahedral octahedral,
icosahedron

(i) Point group Td : Regular tetrahedra molecules have Td point group.
e.g., CH4, CCl4, Ni(Co)4, SiCl4, [Zn(CN)4]2–

Total symmetry operations in Td – E, 8C3, 3C2, 6S4, 6d  24
Symmetry operations are illustrated as follows :

Cl

H

H

Cl

Cl C

v

H2
H1

H4

H3

C
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(a) There are four axes of three fold symmetry each passing through C–
atom and one H–atom. i.e., 4C31, 4C32.

(b) There are three axes of two fold symmetry each passing through
centres of opposite edges. i.e., H1, H2 and H3H4, H2H3 and H1H4  H2H4and H1H3.

(c) Each of the C2 axis is also S4 and S4 is S41, 2S42 hence 6S4 are present.
(d) There are sin planes of symmetry each passing through one edge and

centre of opposite edges.
(ii) Point group Oh – Regular octahedral molecules have Oh point group.

e.g., SF6, [PtCl6]– –, [Co(NH3)6]+++, octahedral complex of MA6 Total
symmetry operations in  Oh – E, 6C4, 3C2(C42), 8C3, 6C2, 6S4, 8S6, 6v,3h, i = 48

(iii) Point group In – Regular icosahedral molecule have In point group.
e.g., Dodecaborane (B12H12)2–, [Mo(CN)8]4–

Total symmetry operations – E, 24C5, 24S10, 20C3, 20S6, 15C2, 15, i = 120.
4.8 Optical Activity and Dipole Moments

Optical activity : The mirror image of a molecule cannot be superimposed
on the original, then the molecule is optically active. In case, it can be superimposed,
the molecule is optically in active. A knowledge of the point group symmetry of
a molecule can be used to find whether the molecule is optically active or not. A
molecule will be optically active if it does not possess the Sn axis of any order. This
means that the molecules should not have the reflections plane (S1 axis), the
inversion centre (S2 axis) and any improper axis of order n. A molecule without
a Sn axis is optically active.

The molecule may possess a Cn axis or many Cn axes. Such a molecule is
said to be dissymmetric 1, 3–dichloroallene is the example of dissymmetric
molecules and is optically active.

C C C
Cl H

H Cl
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A molecules with an assymmetric centre may also be optically active. Sec
butyl chloride and –methylaminoacetic acid are examples of molecules possessing
the assymmetric centre.

C CH3
C H2 5

H
Cl C H

HOOC
H C3

H N2

Dipole moment : Dipole moment is related to the magnitude of the charge
multiplied by the distance between the centres. the use of symmetry elements
can tell us whether a molecule has dipole moment or not. A molecular possesses
dipole moment if it belongs to Cn, Cs, Cnv, Cv. The dipole moment is along the
Cn axis in the Cn and Cnv groups. In Cs groups the moment lies in the reflectional
plane. If there is a plane of symmetry , the dipole moment must lie in this plane
and for several , the dipole moment must lie along their interaction. In case of
NH3, the dipole moment lies along C3 axis which is also the intersection of three
symmetry plane.

A molecule containing a centre of symmetry (i) can not have a dipole
moment, since inversion centre reverses the direction of any vector. Molecules
with many C2 axes also possess zero dipole moment. Since they have symmetry
operations which turn them upside down.
4.9 Representation of Groups

Any symmetry operation about a symmetry element in a molecule involves
the transformation of a set of coordinate x, y and z of an atom into a set of new
coordinates x, y and z. The two sets of coordinates of  the atom can be related
by a set of equations. This set of equations may also be formulated in matrix
notation. Thus each symmetry operation can be represented by a specific matrix.
A knowledge of the matrices of the various operations in a molecule will be useful
to solve structural problems in chemistry.

This chapter will begin with an account of matrix essential to an understanding
the discussion of representation of groups.

A matrix is a rectangular array of numbers or symbol for numbers.
1 2 3
4 5 6
7 8 9

11 12 13
21 22 23
31 32 33

L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M

O

Q

P
P
P

or
a a a
a a a
a a a



( 124 )

GROUP THEORY AND ITS APPLICATIONS

Any element of the matrix can be represented by aij, where i denotes the
rows (horizontal set) and j denote the columns (vertical sets). The order or
dimension of a matrix is defined by the number of rows and columns. When the
number of rows equal the number of columns, the matrix is called as square
matrix. The elements aij of a square matrix for which i  j (i.e., a11, a22, a33 etc)
are called the diagonal elements, and the other elements are called off–diagonals,
when all of the off–diagonal elements of a matrix are zero, the matrix is called as
diagonal matrix. The sum of the diagonal elements of a square matrix is called the
trace or character of the matrix and is represented by symbol (chi).

Diagonal matrix 
3 0 0
0 4 0
0 0 1

L

N

M
M
M

O

Q

P
P
P
 character of this matrix is 8.

Unit matrix 
1 0 0
0 1 0
0 0 1

L

N

M
M
M

O

Q

P
P
P
 character of this matrix is 3.

Matrices may be added, subtracted, multiplied or divided by using the
appropriate rules of matrix algebra. In order to add subtract two matrices, both
matrices must be of the same dimension, i.e., same no. of rows and columns. For
multiplication, column  of A must be equal to row of B.

Representation of Groups—Each symmetry operation in a point group can
be represented by a number or more generally, by a matrix of number. The
matrices for the different symmetry operation can be obtained by considering the
effect of there operations on the components of a two–dimensional vector. The
results can then be entended to three dimensions.

Matrix for the identity operation (E)—By identity operation, the components
x, y and z of a vector remain unchanged. The equations which represent the effect
of identity operation on the vector r are given as :

E.x = 1.x + 0.y + 0.z
E.y = 0.x + 1.y + 0.z
E.z = 0.x + 0.y + 1.z
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In matrix form these equations become

E
x
y
z

x
y
z

L

N

M
M
M

O

Q

P
P
P


L

N

M
M
M

O

Q

P
P
P


L

N

M
M
M

O

Q

P
P
P

1 0 0
0 1 0
0 0 1

Hence matrix for identity operation E is :

E 
L

N

M
M
M

O

Q

P
P
P

1 0 0
0 1 0
0 0 1

Matrix for rotation operations—The z coordinate will be unchanged by any
rotation about the z–axis. Thus, the matrix we seek must be in part,

0
0

0 0 1

L

N

M
M
M

O

Q

P
P
P

The finding the four missing elements can then be solved as a two–
dimensional problem in the xy plane.

Consider the vector r in the two–dimensional coordinate system as given
below. The vector r can be expressed as a column matrix r.

r x
y L

NM
O
QP

P

P'

Y

y

y' r



x x' X
r'
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x and y are the components of the vector r. The vector r be rotated clockwise
through an angle  such that the components of the vector becomes x  and y . The
resulting vector r .

r x
y C rn  L

NM
O
QP
 .

     x r  cos( ) 
 r (cos .cos sin .sin )   
 r rcos .cos sin .sin   
x x y  cos sin  … (i)

and
y r  sin ( ) 
    r rsin .cos cos .sin   
    y xcos sin 
y y x  cos sin  … (ii)

These equations (i) & (ii) are represented in the matrix form as follows :
x
y

x
y




L
NM

O
QP
 

L
NM

O
QP
 L

NM
O
QP

cos sin
sin cos

 
 

This eqn. is just like
r C rn  .

  
L
NM

O
QP

Cn
cos sin
sin cos

 
 

Cn represents the matrix for rotation operation. In three dimension the
matrix Cn(z) become

C zn ( )
cos sin
sin cos 

L

N

M
M
M

O

Q

P
P
P

 
 

0
0

0 0 1
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Matrix for reflection operation :
Consider the vector r with the components x and y. By reflection across the

yz plane, the components x and y  becomes x  and y . x  and y  are related as
x x y   1 0
y x y  0 1

Matrix for this is
x
y

x
y




L
NM

O
QP
 L

NM
O
QP
 L

NM
O
QP

1 0
0 1

The reflection operation yz is expressed as
r' = yz

yz  L
NM

O
QP

1 0
0 1

In three dimension

 y xy2

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1


L

N

M
M
M

O

Q

P
P
P




L

N

M
M
M

O

Q

P
P
P

Like this xz  
L

N

M
M
M

O

Q

P
P
P

1 0 0
0 1 0
0 0 1

Matrix for inversion operation (i) :
The x, y and z component of a vector r are transformed into their respective

negative by the inversion operation.
i.x = –1x + 0y + 0z
i.y = 0x –1y + 0z
i.z = 0x + 0y × 0z
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L

N

M
M
M

O

Q

P
P
P







L

N

M
M
M

O

Q

P
P
P


L

N

M
M
M

O

Q

P
P
P

i
x
y
z

x
y
z

1 0 0
0 1 0
0 0 1

The matrix for inversion operation is

i 





L

N

M
M
M

O

Q

P
P
P

1 0 0
0 1 0
0 0 1

Matrix for improper rotation (Sn) :
Improper rotational axis will be obtained by rotation axis multiplied by n

Sn = Cn, xy(h)
Matrix of CnX matrix of xy

Sn  
L

N

M
M
M

O

Q

P
P
P 

L

N

M
M
M

O

Q

P
P
P

cos sin
sin cos

 
 

0
0

0 0 1

1 0 0
0 1 0
0 0 1

Sn  


L

N

M
M
M

O

Q

P
P
P

cos sin
sin cos

 
 

0
0

0 0 1
The character of the matrices corresponding to the symmetry operations are

as follows :
Symmetry operation Character of the matrix
Identity (E) 3
Proper rotation (Cn) 2 cos  1
Reflection () 1
Inversion (i) –3
Improper rotation (Sn) 2 cos  1
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4.10 Reducible and Irreducible Representation
The character of the identity operation is the dimension of a representation.

Above representation is a three dimensional representation.
A representation of higher dimension which can be reduced tp representation

of lower dimension is called reducible representation. Those representation
which cannot be further reduced to representation of lower dimension are called
irreducible representation. In group theory, one is interested in knowing the
number of irreducible representation in a group.

Representation of higher dimension may be reduced to matrices of smaller
dimension by a process of similarity transformation. If A is a big matrix and is to
be reduced to B, a matrix of smaller dimension. We choose a  matrix X and evaluate
X –1AX which gives us B.

i.e., X –1AX  B
A, B and X matrices are of the same dimensions.

If A
a a a
a a a
a a a

b b
b b

bX AX


L

N

M
M
M

O

Q

P
P
P
 

L

N

M
M
M

O

Q

P
P
P

11 12 13
21 22 23
31 32 33 1

11 12
21 22

33

0
0

0 0
Similarity

transformation
[ ]

A matrix A of 3  3 dimension has been converted to two matrices one of
2  2 and the other 1  1 dimension. This similarity transformation block
diagonalises the original matrix to matrices of reduced order in block form. We
know transformation matrices are operators of the class to which they belong. A
matrix X does not reduce B further (X –1BX  B), then we say that the dimension
is irreducible and its matrices can not be further reduced to lower dimension.

Irreducible representations which are of prime significance in dealing with
the problems associated with molecular geometry. It is also noted that there will
be as many irreducible representations for any point group as there are classes
of symmetry operations for that group. Thus in C2v, there are four classes and four
irreducible one dimensional representation and in C3v, three classes and hence
three irreducible representation.
4.11 The Great Orthogonality Theorem and its Consequences

The orthogonality theorem is concerned with elements of matrices constituting
irreducible representation of a point group. The great orthogonality theorem in
mathematical form is as follows :
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 i mn j m n
R i j

i j mm nnR R h
l l( ) ( )        

i mnR( )  is denoted for the element in the mth row and the nth column of the
matrix corresponding to an operation R in the ith irreducible representation. It
is necessary to take the complex conjugate (denoted by *) of one factor on the left–
hand side whenever imaginary or complex numbers are involved. The complex
conjugate of the element in the mth row and nth column of a matrix in the jth
irreducible representation is denoted by  j m nR( ) *   l i and l j are the dimension
of the ith and jth irreducible representation. h is the order (total number of
symmetry operations) of the point group i j, mm , nn  denote the kronecker delta
symbol.

For simplicity we can omit the explict designation of complex conjugate.
Then simple equations can be represented as :

 i mn j mn
R

R R i j( ) ( )   0 if

Elements of corresponding matrices of different irreducible representation
are orthogonal.

 i mn i m n
R

R R m m n n( ) ( )        0 if and

Elements of different set of the matrices of the same irreducible representation
are orthogonal

 i mn i m n
iR

R R h
l( ) ( )   

Elements in the mth ros and nth column of a matrix for operation R in
the ith irreducible representation. The square of the length of any such vector
equals h

l .
Consequences of orthogonality theorem (Properties of irreducible

representation) :
The properties of irreducible representation is essential to construct the

character talls of a point group. The following fine rules are given below about the
irreducible representation.
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(i) The number of irreducible representation of a group is equal to the
number of classes in the group.

(ii) The sum of the square of the dimension of the irreducible representation
of a group is equal to the order of the group.

l l l l hi
2 12 22 32     

Since i(E), the character of the representation of identity operation (E) in
the ith irreducible representation is equal to the order of representation. We can
also write :

i
i

E h( ) 2 
(iii) The sum of the square of the character of any irreducible representation

is equal to h.
i

R
R h( ) 2 

(iv) The characters of two different irreducible representations of the
same group are orthogonal to each other.

 i j
R

R R i j( ). ( )  0 when
(v) The character of all matrices belonging to operations in the same class

are identical.
By using these rules we can construct character table of different point

group.
4.12 Character Table

A more compact and self–explanatory representation table of a point group
is said as ‘character table’. The character tables of molecular point groups are
important from the point of view of their application to chemical problems. The
character of reducible and irreducible representation of symmetry operation of a
point group are arranged in the character table and are used for understanding
the various problems like atomic orbitals, hybrid orbitals, molecular orbitals in
polyatomic molecules, crystal field theory of complex compounds, electronic and
vibrational spectra of molecules.
Symbol for irreducible representation :

The symbol for the irreducible representation was given by Mulliken and
hence called as Mulliken symbol. The rules are as follows :
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(i) All unidimentional representations are represented either by A or B,
two dimensional representations are  represented by E and three dimensional
representations are represented by T.

(ii) One dimensional representations which are symmetrical with respect
to the principal axis (i.e., character of Cn operation is +1) are designated as A while
those antisymmetric in this respect (i.e., character of Cn operation–1) are designated
as B.

(iii) Those irreducible representations which are symmetrical with respect
to the subsidiary axis, or in its absence to v plane, subscript 1, (i.e., A1, B1, E1,T1) is used and for antisymmetric subscript 2 (i.e., B1, A2, E2, T2) is used.

(iv) Primes and double primes are attached to all  A, B, E or T to indicate
the symmetric and antisymmetric with respect to h. A or E  appears forth hhaving +1 and A or E  appear for the h having 1.

(v) Subscript g and u are used to indicate the symmetric and antisymmetric
to the inversion. If the point group has no centre of symmetric, g or u are not used.
Term g stands for gerade (centro symmetric) and u stands for ungerage (non–
centro symmetric)
Construction of character table for C2v point group :

There are total of four symmetric operations C2v point group i.e., E, C2(2) ,xz, yz
(i) There operations belong to four different classes hence there are four

irreducible representations. Let be    1 2 3 4, , , .
(iii) It is also requires that the sum of the square of the dimensions of

these representations equal h (order of the group) i.e., 4. Hence each representation
must be unidimensional so that

12 + 12 + 12 + 12 = 4
Because the character of identity operation is equal to the dimension of the

representation and hence E must be equal to one (1) in all of them.
E C2(2) xz yz

1 1
2 1
3 1
4 1
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(iii) The sum of the square of the character of an irreducible representation
must be equal to 4 as

 i
R

R( ) 2 4
i.e. 12 + 12 + 12 + 12 = 4

E C2(2) xz yz
1 1 1 1 1
2 1
3 1
4 1

(iv) The sum of the square of the character of other irreducible representation
must be equal to four and the character must also be orthogonal. Hence character
must include two +1 & two 1.

Therefore, we will have
E C2(2) xz yz

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1

All there representation are also orthogonal to one another taking 2.3, we
have

(1)(1) + (–1)(–1) + (–1)(1) + (1)(–1) = 0
The complete character table for the point group C2v is as follows :
C2v E C2(2) x2  y2
A1 1 1 1 1 z x2, y2, z 2
A2 1 1 1 1 R2 xy
B1 1 1 1 1 x, Ry x z
B2 1 1 1 1 y, Rx y z
I II III IV
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In the upper left corner is the schonflies notation for the group and the
upper row of the table are listed the symmetry operations grouped into classes.

Area I : Area I represents the symbol for the irreducible represnetation
according to the Mulliken. All these irreducible representation are of unidimensional
and hence A or B symbol be used. Because upper two  irreducible representations
are symmetrical with respect to the principal axis and hence A's are written and
lower two representation are anti symmetrical with respect to the principal axis
and hence B 'sare written. Subscript 1 or 2 are written for the symmetrical and
antisymmetrical respectively with respect to xz.

Area II : Area II of the character table are the characters of the irreducible
representation of the point group C2v.

Area III : Area III represents the Cartesian coordinates or rotational axis
corresponding to irreducible representation. In order to assign the Cartesian
coordinate or rotational axis, we must perform the operations on them and
enquire the character.

Consider a vector along z–axis. The operations E, C2(2), xz,yz do not change
the direction of the head of the vector. Hence its character are 1, 1, 1, 1. Thus
the vector z transforms under the symmetry operations into A1. Similarly X and
Y vector transform into B1 and B2 representation.

Rotational axis Rx, Ry and Rz represent rotation about x, y and z–axis. To
understand the transformation by rotational axis, we should mark a curved arrow
and symmetry operation is performed. If the direction of the head of the arrow
does not change due to operation, the character is +1 and 1 for the change of
head of arrow :

E C2 xz yz Transformation into
R2 R2 1 1 –1 –1 A2

Ry Ry 1 –1 1 –1 B1

Ry Rx 1 1 –1 1 Bz

Area IV : Area IV represnets squares binary products to the irreducible
representation. For assignment of the square and binary products of the vectors,
the characters are squared or direct products are obtained. x 2, y2 and z 2 belongs
to A1 irreducible representation. The product of character of X & Y belongs to A2,

z

Y
Y
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product of X & Z belongs to B1 and product of Y & Z belongs to B2 representations.
Construction of character table for C3v point group :

(i) There are total of six symmetry operations present in C3v point group
i.e., E, C C a b c31 22, , , ,   . These operations are divided into the three classes are
hence there are E C v, ,2 32   three irreducible representations. Let it be 1,2 and 3.

(ii) The sum of the square of the dimensions (character of the identity
operation) should be equal to 6

l l l li2 12 22 32 6   
The only value of the l i that with satisfy this requirement and 1, 1, and 2.

C3v E 2C3 3v
1 1
2 1
3 2

(iii) Every point group possesses one representation which is totally
symmetric. In this representation, all the operations have the character value
one(1). Thus we have

C3v E 2C3 3v
1 1 1 1

It can be seen that the summation of the square, of the character of the
operations is equal to 6.

12 + 2  12 + 3  12 = 6
(iv) 2 (second irreducible representation) must be orthogonal to 1. since

2(E) must always be positive and hence 2 must consist of three +1 and three –
1. This is only possible if 2 has 1, 1 and  –1.

C3v E 2C3 3v
1 1 1 1
2 1 1 –1
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(v) One third representation will be of two dimensions and hence 3(E)
is 2. In order to find out the values of 3(C1) and 3(v) we make the use of the
orthogonality relationship. 1 & 3 are orthogonal to each other and 2 & 3 are
also.

C3v E 2C3 3v
1 1 1 1
2 1 1 –1
3 2 3(C3) 3(v)

    1 3 3 2 31 2 21 3 1 0( ). ( ) ( ).( ) ( ). ( ) .( ) ( )R R C vR
    … (i)

and     2 3 3 3 31 2 21 3 1 0( ). ( ) ( ).( ) ( ). ( ) .( ) ( )R R C vR
     … (ii)

Solving eqn. (i) & (ii),
23(C3) + 33(v) = –2 … (iii)
23(C3) – 33(v) = –2 … (iv)

Both equations are added
43(C3) = –4

 3(C3) = –1
This value is substituted in equation (iii)

2(–1) + 33(v) = –2
33(v) = 0

 3(v) = 0
Thus the complete set of character of irreducible representation of C3v point

group is :
C3v E 2C3 3v
1 1 1 1
2 1 1 –1
3 2 –1 0
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The complete character table for the point group C3v is as follows :
C3v E 2C3 3v
A1 1 1 1 z x2, y2, z 2

A2 1 1 1 R2
E 2 –1 0 (x, y) (Rx, Ry) (x2 – y2, xy) (xz, yz)
I II       III            IV

In the upper left corner in the schonflies notation for the group and the
upper row of the table are listed the symmetry operations grouped into the
classes.

Area I represents the symbol for the irreducible representations according
to the Mulliken. This is why these symbols ar called as Mulliken symbol.

Because first two irreducible representations are uni dimensional and
hence A or B are used. The character of principal axis of rotation for both the
representations are symmetrical and hence A is used. Subscript 1 is written for
the symmetrical character (+1) of operation v which subscript 2 is written for the
unsymmetrical character (–1) of operation v. The symbol E show the two dimensional
representation.

Area II—In area II of the table are the characters of the irreducible
representation of the point group.

Area III—Area III gives the transformation properties of cartesian coordinates
x, y, z and rotations about x, y and z axes. i.e., Rx, Ry and Rz.

The vector along z–axis remains unchanged with respect to E, C3 and voperations. The matrices and character for the transformation of coordinate z by
these operations are :

E C3 v
Matrices [1] [1] [1]
Character 1 1 1

This set of characters corresponds to the A1 representation and hence z
transforms or the A1 represntation. This is why z is written in the A1 representation.
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The matrices and character for the transformation of coordinates x and y
by the operators E, C3 and v are :

E      C3 v

Matrices 1 00 1L
NM

O
QP


 

L

N

M
M
M
M

O

Q

P
P
P
P

1
2

3
23

2
1
2

   1 00 1L
NM

O
QP

Character   [2]     [–1]        [0]
This set belongs to the E representation. It is important that x and y are

inseparable in this respect.
Transformation properties of Rx, Ry and Rz – The rotation axis Rz can be

shown as an arrow around z–axis. On performing E or C2, the direction of the head
of the arrow remains same (character = +1). However, on performing v, the
direction of the head of the arrow changes (character = –1). Thus its character is
1, 1, –1 and belongs to representation A2. This is why R2 is written for A2representation. Rx and Ry form a two dimensional representation and belongs to E.

Area IV – In this area of the table, squares and binary products of coordinate
according to their transformation properties are described. The squares of the
vectors (x2 – y2) and z 2 belong to A1. x 2 – y 2 and xy takes together and xz, yz
taken together belong to E.
4.13 Direct Products and Reduction Formula

Reduction formula – Relationship between reducible representation and
irreducible representation.

The relationship that exist between the two q of prime importance because
this can readily tell us the number of time the jth irreducible representation
occurs in the reducible representation when we know the character of each
representation.

The reducible representation can be split into irreducible representation
with the help of similarity transformation method. The irreducible representation
appear as block–factored matrices along the diagonal. Using the principle that the
character of a matrix is unaltered by any similarity transformation, we can write

X R n X Rj jj
( ) ( ) 
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Where X (R) is the character of the matrix corresponding to an operation R
in the reducible representation. nj refers to the number of times the block
consistituting the irreducible representation repeats itself in the diagonal X j (R)
refers to the character of the matrix for the operation R in the jth irreducible
representation. The relation between X (R) and Xj (R) can be obtained by the
following formula called as reduction formula.

 j jRh X R n X R 1 ( ). . ( )

h  order of the group, n  no. of operations of that type.
Using the characters of irreducible representation of point group C3v, the

no. of times each irreducible representation ocuurs in the following two reducible
representation can be calculated as follows :

C3v E 2C3 3v
A1 1 1 1
A2 1 1 –1
E 2 –1 0
a 5 2 –1
b 7 2 –3

Using the reduction formula

 j jRh X R n X R 1 ( ). . ( )

For a reducible representation :

1 = n1 = 1
6  [1(1)(5) + 2(1)(2) + 3(1)(–1)] = 1

2 = n2 = 1
6  [1(1)(5) + 2(1)(2) + 3(–1)(–1)] = 2

3 = n3 = 1
6  [1(2)(5) + 2(–1)(2) + 3(0)(–1)] = 1

a = 1 + 2 2 + 3

U
V
||

W
||

U

V
|
||

W
|
|
|

Irreducible representation

Reducible representation
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In the a reducible representation, there are four irreducible representation
i.e., one 1, two 2 and one 3. If we add all the character of all operations of all
irreducible representations, we find the character of reducible representation as
follows :

C3v E 2C3 3v
1 1 1 1
2 1 1 –1
2 1 1 –1
3 2 –1 0
4 5 2 –1

For b reducible representation

1 = n1 = 1
6  [1(1)(7) + 2(1)(1) + 3(1)(–3) = 0

2 = n2 = 1
6  [1(1)(7) + 2(1)(1) + 3(–1)(–3) = 3

3 = n3 = 1
6  [1(2)(7) + 2(–1)(1) + 3(0)(–3) = 2

Thusb = 32 + 23
In the b representation, there are five irreducible representation i.e., three

2 and two 3. This can be verified by the following table.
C3v E 2C3 3v
2 1 1 –1
2 1 1 –1
2 1 1 –1
3 2 –1 0
3 2 –1 0
b 7 1 –3
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Directi products :
Suppose i and j are the two wave functions which are bases for representations

of a group. The product of these functions can also forms a basis for representation
of the group. This representation is called the direct product representation. The
direct product representation can also be obtained for products of three, four or
more functions. An important rate concerning the characters of operations in the
direct product is stated as :

The characters of the representation of a direct product are equal to the
products of the characters of the representations based on the individual sets of
functions.

If XA(R) and XB(R) denote the characters for operation R in the representations
A and B, then the character for operation R in the direct product represent is given
by :

X R X R X RAB A B( ) ( ). ( )
Where XAB(R) denotes the character of operation R in the direct product

representationAB. The direct product representation of the irreducible
representations of a group can be obtained using the character table for the
group.

The direct products of some irreducible representations of point group D3hare as follows :

D E C C S
A
A
E

A
A
E

h n v3 3 2 3
1
2

1
2

2 3 2 3
1 1 1 1 1 1
1 1 1 1 1 1
2 1 0 2 1 0
1 1 1 1 1 1
1 1 1 1 1 1
2 1 0 2 1 0

 

  
  
    
    
   

The direct product A1.A2 is given by :
A A
A A A

1 2
1 2 2

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1

          
      
. ( )
.
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Similarily,
A E E1    .
E A E     . 1
A E E2    .
E'2 = 4 1 0 4 1 0
    = A11 + A21 + E1

The product representations A1'.E1' E'.Az'' and A2'E' are irreducible
representation. The direct product representation E  2 is reducible.

The representation of a direct products. AB, will contain the totally symmetric
representation only if the irreducible representation A is equal to the irreducible
representation B.
4.14 Summary

The crystal structure, infrared spectra, ultra–violet spetra, dipole moments
optical activities all there are properties which depends on molecular symmetry.
Symmetry is present in geometrical figures, crystalline solids and molecules Cn(axis of symmetry),  (plane of symmetry), i (centre of symmetry) and Sn (improper
axis of symmetry) are the element of symmetry. The symmetry operations are
rotation about axis, reflection in a plane, inversion about point and rotation–
reflection or reflection–rotation, we have to know about the total symmetry
operations present in a certain molecules. All the symmetry operations present
in a molecule form a group. Groups have four requirements i.e., closure, identity,
inverse and assiciation. There requirements are judged by the multiplication
table, subgroup is the smaller group within a group which also obey all the
requirements of group. Classes of operations, similarity transformation, conjugate
have very important points of group theory. Point group of a molecule is determined
using the total symmety operations present in that molecule. Point group of
molecule is just abbreviation of total symmetry operations of a molecule. Optical
activity and dipole moment may also be determined using the point group of the
molecule.

Symmetry elements in a point group may also be represented by matrix
representations may be reducible or irreducible. Great orthogonality theorem in
concerned with the irreducible representation of a point group. This theorem is
useful for the construction of character table. Character table is self explanatory
and is used to solve the problem of chemical importance.



( 143 )

GROUP THEORY AND ITS APPLICATIONS

4.15 Questions for Exercise
1. Explain elements of symmetry and symmetry operations.
2. Write all the symmetry operations in the following molecules.

H2O, NH3, BF3, PCl5, SF6, CH4, Ni(Co)4, CH3Cl, CH2Cl2, CHCl3, CCl4,C6H6, H2 HCl, CO2, SO2, CO3––, NO3–, cis–[Co(NH3)4Cl2]+, trans–
[Co(NH3)4Cl2]+, [Co(NH3)5Cl]++, [Pt(NH3)4]++, Cl2, CH2Cl2 (trans),
[Co(NH3)6]+++, [Fe(CN)6]– – – –.

3. What are the requirements of a mathematical groups ? Explain with
examples.

4. Explain subgroup, class, conjugate, similarity transformation with
examples.

5. Write multiplication table for point group C2v and C3v.
6. Write the two examples of the following point group.

C3v, C2h, C3h, D3h, D2h, Ci, Cs, Dn, D2d, D6h, Td, Oh, Cv, Dv, C i .
7. Write the point group of the following molecules written in question

(2).
8. Explain abelian groups Is C2v point group form an abelian group ?
9. Deduce the matrix representation for the identity rotational operation,

reflectional operation, rotational–reflectional operation and inversion.
10. Explain reducible and irreducible reprsentations. Write the Great

orthogonality theorem and its consequences.
11. Construct the character table for the point group C2v and C3v.
12. How the irreducible representation are symbolised? Write the reduction

formula and explain with examples ?
13. Explain why the following molecules posses zero dipole moment :

(a) CO2
(b) staggered form of ethane
(c) Methane.

14. Write the order of C3v point group. Is any subgroup present in the
multiplication table for C3v point group.

15. Write the direct product representation with examples.
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